ICF13B

13th International Conference on Fracture June 16–21, 2013, Beijing, China -9- References [1] W.H. Kim, C. Laird, Crack nucleation and state I propagation in high strain fatigue-II mechanism. Acta Metallurgica, (1978) 789-799. [2] R.L. Lyles, H.G. F. Wilsdorf, Microcrack nucleation and fracture in silver crystals. Acta metall, 23 (1975), 269-277. [3] R. Piques, P. Bensussan, A. Pineau, Crack initiation and growth under creep and fatigue loading of an austenitic stainless steel. Nuclear Eng and Design, 116 (1989) 293-306. [4] H. Nowack, D. Hanschmann, W. Ott, K.-H. Trautmann, E. Maldfeld, Crack initiation life behavior under biaxial loading conditions-experimental behavior and prediction. SAE Special Publications, 1280 (1997) 159-183. [5] N. Haddar, A. Fissolo, 2D simulation of the initiation and propagation of crack array under thermal fatigue. Nuclear Eng and Design, 235 (2005) 945-964. [6] M.E. Fine, P. Bhat, A model of fatigue crack nucleation in single crystal iron and copper. Mater Sci Eng A, 468-470 (2007) 64-69. [7] J. Belak, On the nucleation and growth of voids at high strain-rates. J Computer-Aided Materials Design, 5 (1998) 193-206. [8] H. Vehoff, A. Nykyforchyn, R. Metz, Fatigue crack nucleation at interfaces. Mat Sci Eng A, 387-389 (2004) 546-551. [9] K. Kirane, S. Ghosh, M. Groeber, A. Bhattacharjee, Grain level dwell fatigue crack nucleation model for Ti alloys using crystal plasticity finite element analysis. J Eng Mat Tech, 131 (2009) 021003. [10] A. Manonukul, F.P.E. Dunne, High- and low-cycle fatigue crack initiation using polycrystal plasticity. in: Proc Royal Society of London, Series A (Mathematical, Physical and Engineering Sciences), 2004, vol. 460, no. 2047, pp. 1881-903. [11] K. Binder, D.W. Heermann, Monte Carlo Simulation in Statistical Physics: An Introduction, 4th ed, Springer, Berlin, 2002. [12] B.N. Cox, W.L. Morris, Monte Carlo simulations of the growth of small fatigue cracks. Eng Fracture Mechanics, 31 (1988) 591-610. [13] T. Shimokawa, Y. Kakuta, Application of Monte Carlo simulation for fractographic analysis of fatigue crack propagation, Inter J Fatigue, 18 (1996) 321-327. [14] Y. Zhao, Monte Carlo simulation and modification on the historic probabilistic fatigue S-N curves. in: Proc IEEE 10th Inter Conf on Computer-Aided Industrial Design & Conceptual Design, 2009, pp. 2323-2327. [15] C.M. Kim, J.K. Kim, C.S. Kim, Fatigue life evaluation of ERW joint in the pipe using Monte-Carlo simulation. Key Eng Mat, 297-300 (2005) 3-9. [16] T.J. Smy, S.S. Winterton, M.J. Brett, A monte carlo computer simulation of electromigration. J App Phy, 73 (1993) 2821. [17] P. Bruschi, A. Nannini, M. Piotto, Three-dimensional Monte Carlo simulations of electromigration in polycrystalline thin films. Computational Material science, 17 (2000) 299-304. [18] W. Li, C.M. Tan, Dynamic simulation of electromigration in polycrystalline interconnect thin film using combined Monte Carlo algorithm and finite element modeling, in: Symp Microelectronics, Singapore, 2006. [19] http://www.engineeringtoolbox.com/overall-heat-transfer-coefficient-d_434.html [20] ANSYS, Theory Reference and reference therein [21] D.R. Askeland, The Science and Engineering of Materials, PWS-Kent Publishing Co., 1987. [22] J.E Epperson, P Fürnrohr, V. Gerold, Two stages of binding energy between vacancies and in atoms in an Al matrix. Mat Sci and Eng, 19 (1975) 95-103. [23] X.-G. Wang, A. Chaka, M. Scheffler, Effect of the environment on α-Al2O3 (0001) surface structures. Phsical Review Letters, 84 (2000) 3650-3653.

RkJQdWJsaXNoZXIy MjM0NDE=