13th International Conference on Fracture June 16–21, 2013, Beijing, China -8- References [1] L. Vehovar, V. Kuhar, A. Vehovar, Hydrogen-assisted stress-corrosion of prestressing wires in a motorway viaduct. Eng Fail Anal, 5 (1998) 21–27. [2] M. Perrin, L. Gaillet, C. Tessier, H. Idrissi, Hydrogen embrittlement of prestressing cables. Corros Sci, 52 (2010) 915–926. [3] J. Ahmad, J. Purbolaksono, Hydrogen embrittlement due to mild condensate contamination by sea water ingress through condenser tube leakages: a case study. Desalination, 274 (2011) 302–307. [4] J. Capelle, J. Gilgert, I. Dmytrakh, G. Pluvinage, The effect of hydrogen concentration on fracture of pipeline steels in presence of a notch. Eng Fract Mech, 78 (2011) 364–373. [5] B.G. Pound, Hydrogen trapping in high-strength steels. Acta Mater, 46 (1998) 5733–5743. [6] G. Wayne, Ph. D. Thesis, Corrosion and embrittlement of high-strength steel bridge wires. Columbia University (2001). [7] S. Ramadan, L. Gaillet, C. Tessier, H. Idrissi, Detection of stress corrosion cracking of high-strength steel used in prestressed concrete structures by acoustic emission technique. Appl Surf Sci, 254 (2008) 2255–2261. [8] J. Toribio, V. Kharin, Evaluation of hydrogen assisted cracking: the meaning and significance of the fracture mechanics approach. Nucl Eng Des, 182 (1998) 149–163. [9] D.G. Enos, J.R. Scully, A critical-strain criterion for hydrogen embrittlement of cold-drawn ultrafine pearlitic steel. Metal Mater Trans, A33 (2002) 1151–1166. [10]J. Toribio, F.J. Ayaso, Optimization of the round-notched specimen for hydrogen embrittlement testing of materials. J Mater Sci Lett, 39 (2004) 4675–4678. [11]D.G. Enos, A.J. Williams, J.R. Scully, Long-term effects of cathodic protection of prestressed concrete structures: hydrogen embrittlement of prestressing steel. Corrosion, 53 (1997) 891–908. [12]J. Toribio, A.M. Lancha, M. Elices, Macroscopic variables governing the microscopic fracture of pearlitic steels. Mater Sci Eng, A145 (1991) 167–177. [13]J. Toribio, V. Kharin, D. Vergara, M. Lorenzo, Two-dimensional numerical modelling of hydrogen diffusion in metals assisted by both stress and strain. Adv Mat Res, 138 (2010) 117–126. [14]M. Wang, E. Akiyama, K. Tsuzaki, Crosshead speed dependence of the notch tensile strength of a high strength steel in the presence of hydrogen. Scripta Mater, 53 (2005) 713–718. [15]S. Takagi, S. Terasaki, K. Tsuzaki, T. Inoue, F. Minami, A new evaluation method of hydrogen embrittlement fracture for high strength steel by local approach. ISIJ Inter, 45 (2005) 263–271. [16]M. Wang, E. Akiyama, K. Tsuzaki, Effect of hydrogen on the fracture behavior of high strength steel during slow strain rate test. Corros Sci, 49 (2007) 4081–4097. [17]J. Toribio, V. Kharin, A hydrogen diffusion model for applications in fusion nuclear technology. Fusion Eng Des, 51-52 (2000) 213–218. [18]R.S. Lillard, D.G. Enos, J.R. Scully, Calcium hydroxide as a promoter of hydrogen absorption in 99.5% Fe and a fully pearlitic 0.8% C steel during electrochemical reduction of water. Corrosion, 56 (2000) 1119–1132. [19]J.P. Hirth, Effects of hydrogen on the properties of iron and steel. Metal Trans, 11A (1980) 861–890. [20]J. Toribio, V. Kharin, D. Vergara, M. Lorenzo, Optimization of the simulation of stress-assisted hydrogen diffusion for studies of hydrogen embrittlement of notched bars. Mater Sci, 46 (2011) 819–833. [21]F.J. Ayaso, Ph. D. Thesis, Fractura de alambres entallados de acero eutectoide progresivamente trefilado (in Spanish). University of La Coruña, Spain (2001).
RkJQdWJsaXNoZXIy MjM0NDE=