ICF13B

13th International Conference on Fracture June 16–21, 2013, Beijing, China -10- [6] C.C. Chu, A. Needleman, Void nucleation effects in biaxial stretched sheets. J Eng Mater Technol, 102(1980) 249–256. [7] T. Pardoen, J.W. Hutchinson, An extended model for void growth and coalescence. J Mech Phys Solid, 48(2000)2467–2512. [8] P.F. Thomason, A three-dimensional model for ductile fracture by the growth and coalescence of micro-voids. Acta Metall, 33(1985)1087–1095. [9] P.F. Thomason, A view on ductile-fracture modelling. Fatigue Fract Eng M, 21(1998)1105–1022. [10] Y. Bao, Dependence of ductile crack formation in tensile tests on stress trixiality, stress and strain ratios. Eng Frcat Mech, 72(2005)505–522. [11] X.S. Gao, J. Kim, Modeling of ductile fracture: Significance of void coalescence. Int J Solids Struct, 43(2006) 6277–6293. [12] ABAQUS, Standard User’s Manual, Version 6.11, 2012. [13] Z.L. Zhang, A complete Gurson model, in: M.H. Alibadi, Nonlinear Fracture and Damage Mechanics, WIT Press, Southampton, UK, 2001, pp. 223–248. [14] J. Koplik, A. Needleman, Void growth and coalescence in porous plastic solids. Int J Solids Struct, 24(1988)835–853. [15] C.K. Oh, Y.J. Kim, J.H. Baek, W.S Kim, Development of stress-modified fracture strain for ductile failure of API X65 steel. Int J Fract, 143(2007)119–133. [16] N. Aravas, On the numerical integration of a class of pressure-dependent plasticity models. Int J Numer Meth Eng, 24(1987)1395–1416. [17] Z.L. Zhang, Explicit consistent tangent moduli with a return mapping algorithm for pressure-dependent elastoplasticity models. Comput Method Appl M, 121(1995)29–44. [18] J. Koplik, A. Needleman, Void growth and coalescence in porous plastic solids. Int J Solids Struct, 24(1988)835–853. [19] J. Faleskog, C.F. Shih, Micromechanics of coalescence I: Synergistic effects of elasticity, plastic yielding and multi-size-scale voids. J Mech Phys Solids, 45(1997)21–45. [20] J. Kim, X.S. Gao, T.S. Srivatsan, Modeling of void growth in ductile solids: effects of stress triaxiality and initial porosity. Eng Fract Mech, 71(2004) 379–400. [21] B.A. Bilby, I.C. Howard, Z.H. Li, Prediction of the first spinning cylinder test using ductile damage theory. Fatigue Fract Eng M, 16(1992) 1–20.

RkJQdWJsaXNoZXIy MjM0NDE=