ICF13B

13th International Conference on Fracture June 16–21, 2013, Beijing, China -8- [11]Cavanaugh M K, Buchheit R G, Birbilis N, Modeling the environmental dependence of pit growth using neural network approaches. Corro. Sci., 52 (2010) 3070-3077. [12]Sriraman M R, Pidaparti R M, Life Prediction of Aircraft Aluminum Alloys Subjected to Pitting Corrosion Damage Under Cyclic Stresses. J. AIRCRAFT, 46 (2009) 1253-1259. [13]Buxton D C, Cottis R A, Scarf P A, McIntyre P, Life prediction in corrosion fatigue, in: Proc. Int. Conf. Corrosion-Deformation Interaction, Fontainebleau, France, 1992, pp. 901-913. [14]Turnbull A, McCartney L N, Zhou S, A model to predict the evolution of pitting corrosion and the pit-to-crack transition incorporating statistically distributed input parameters. Corro. Sci., 48 (2006) 2084-2105. [15]Turnbull A, Zhou S, Pit to crack transition in stress corrosion cracking of a steam turbine disc steel. Corro. Sci., 46 (2004) 1239-1264. [16]Pidaparti R M, Patel R K, Investigation of a single pit/defect evolution during the corrosion process. Corro. Sci., 52 (2010) 3150-3153. [17]Jeffrey R, Melchers R E, The changing topography of corroding mild steel surfaces in seawater. Corro. Sci., 49 (2007) 2270-2288. [18]Dolley E J, Lee B, Wei R P, The effect of pitting corrosion on fatigue life. Fat. Fract. Eng. Mater. Struct., 23 (2000) 555-560. [19]Rokhlin S I, Kim J Y, Nagy H, Zoofan B, Effect of pitting corrosion on fatigue crack initiation and fatigue life. Eng. Fract. Mechan., 62 (1999) 425-444. [20]Burstein G T, Pistorius P C, Mattin S P, The nucleation and growth of corrosion pits on stainless steel. Corro. Sci., 35 (1993) 57-62. [21]Li L, Li X, Dong C, Huang Y, Computational simulation of metastable pitting of stainless steel. Electrochimica Acta, 54 (2009) 6389-6395. [22]Shi P, Mahadevan S, Damage tolerance approach for probabilistic pitting corrosion fatigue life prediction. Eng. Fract. Mechan., 68 (2001) 1493-1507. [23]Shi P, Mahadevan S, Corrosion fatigue and multiple site damage reliability analysis. Int. J. Fat., 25 (2003) 457-469. [24]Bastidas-Arteaga E, Bressolette P, Chateauneuf A, Sánchez-Silva M, Probabilistic lifetime assessment of RC structures under coupled corrosion–fatigue deterioration processes. Struct. Safety, 31 (2009) 84-96. [25]Ebara R, Corrosion fatigue crack initiation behavior of stainless steels. Procedia Eng., 2 (2010) 1297-1306. [26]Chen G S, Wan K C, Gao M, Wei R P, Flournoy T H, Transition from pitting to fatigue crack growth-modeling of corrosion fatigue crack nucleation in a 2024-T3 aluminum alloy. Mater. Sci. Eng.: A, 219 (1996) 126-132. [27]Medved J J, Breton M, Irving P E, Corrosion pit size distributions and fatigue lives—a study of the EIFS technique for fatigue design in the presence of corrosion. Int. J. Fat., 26 (2004) 71-80. [28]Ma F Y, Wang W H, Fatigue crack propagation estimation of SUS 630 shaft based on fracture surface analysis under pitting corrosion condition. Mater. Sci. Eng.: A, 430 (2006) 1-8. [29]Seifert H P, Ritter S, Corrosion fatigue crack growth behaviour of low-alloy reactor pressure vessel steels under boiling water reactor conditions. Corro. Sci., 50 (2008) 1884-1899. [30]Sivaprasad S, Tarafder S, Ranganath V R, Tarafder M, Ray K K, Corrosion fatigue crack growth behaviour of naval steels. Corro. Sci., 48 (2006) 1996-2013.

RkJQdWJsaXNoZXIy MjM0NDE=