ICF13B

13th International Conference on Fracture June 16–21, 2013, Beijing, China -8- Journal of the Society of Materials Science, Japan, 29 (1980) 162–167. [3] K. Endo, K. Komai, Fatigue crack growth of aluminum alloy in ultra-high vacuum, Journal of the Society of Materials Science, Japan, 26 (1977) 143–148. [4] N. Kawagoishi, T. Fukudome, K. Kariya, Q. Chen, M. Goto, Fatigue strength of age-hardened & extruded Al alloy under high humidity (Rotating bending and ultrasonic loading), Transactions of the Japan Society of Mechanical Engineers, Series A, 76 (2010) 1651–1658. [5] N. Kawagoishi, A. Higashi, Q. Chen, Y. Nakamura, K. Morino, Effect of microstructure on fatigue properties of Al alloys 2017 in high humidity, Journal of the Society of Materials Science, Japan 61 (2012) 556–563. [6] Haftirman, S. Hattori, T. Okada, Fatigue strength of aluminum alloys in high-humidity environment, Transactions of the Japan Society of Mechanical Engineers, Series A, 62 (1996) 1140–1145. [7] K. Asami, H. Emura, The influence of moisture on fatigue crack propagation characteristics of high-strength steels, Journal of the Society of Materials Science, Japan, 49 (1990) 425–431 [8] N. Kawagoishi, M. Oki, M. Goto, Q. Chen, QY. Wang, Crack propagation behavior of Al Alloy 7075-T6 under ultrasonic fatigue, Transactions of the Japan Society of Mechanical Engineers, A, 72 (2006) 1356–1363. [9] P.J. Ferreira, I.M. Robertson, H.K. Birnbaum, Hydrogen effects on the interaction between dislocations, Acta Materialia, 46 (1997) 1749–1757.

RkJQdWJsaXNoZXIy MjM0NDE=