13th International Conference on Fracture June 16–21, 2013,Beijing, China -9- [2] H. Hallberg, L. Banks-Sills, M. Ristinmaa, Crack tip transformation zones in austenitic stainless steel. ENG FRACT MECH, 79 (2012) 266-280. [3] S. Suresh, Fatigue of Materials, Cambridge University Press, Cambridge, 1998. [4] G.R. Chanani, S.D. Antolovich, W.W. Gerberich, fatigue Crack Propagation in Trip Steels. METALL MATER TRANS B, 3 (1972) 2661 - 2672. [5] A.G. Pineau, R.M. Pelloux, Influence of Strain-induced Martensitic Transformation on fatigue Crack Growth rates in Stainless Steels. METALL MATER TRANS B, 5 (1974) 1103-1112. [6] E. Hornbogen, Martensitic Transformation at a Propagating Crack. ACTA METALL MATER, 26 (1978) 147-152. [7] G. Schuster, C. Altstetter, Fatigue of Annealed and Cold Worked Stable and Unstable Stainless Steels. METALL TRANS A, 14 (1983) 2077-2084. [8] Z. Mei, J.W. Morris, Influence of deformation-induced martensite on fatigue crack propagation in 304-type steels. METALL TRANS A, 21 (1990) 3137-3152. [9] W.Y. Maeng, M.H. Kim, Comparative study on the fatigue crack growth behavior of 316L y 316LN stainless steel: Effect of microstructure of cyclic plastic strain zone at crack tip. J NUCL MATER, 282 (2000) 32-39. [10] S. Biswas, S. Sivaprasad, N. Narasaiah, S. Tarafder, P.C. Chakraborti, Load history effect on FCGR behaviour of 304LN stainless steel. INT J FATIGUE, 29 (2007) 786-791. [11] S. Kalnaus, Y. Jiang, A.K. Vasudevan, An experimental investigation of Fatigue crack Growth of stainless steel 304L. INT J FATIGUE, 31 (2009) 840-849. [12] X. Cheng, R. Petrov, L. Zhao, M. Janssen, Fatigue Crack growth in TRIP steel under positive R - ratios. ENG FRACT MECH, 75 (2008) 739-749. [13] W. Elber, The significance of fatigue crack closure, in: M.S. Rosenfeld (eds.), Damage tolerance in aircraft structures ASTM STP 486, Philadelphia, 1971, pp. 230-242. [14] P. Hedstrom, Deformation induced martensitic transformation of metastable stainless steel AISI 301, Lulea, Lulea University of Technology, 2005. [15] J. Schijve, Some formulas for the crack opening stress level. ENG FRACT MECH, 14 (1981) 461-465. [16] H.R. Hartmann, R.W. Churchill. KRAK-GAGE: A new Transducer for Crack Growth Measurement. Presented at the Society for Experimental Stress Analysis Fall Meeting, sponsored by the Society for experimental Stress Analysis, 1981. [17] TTI Division, Hartrun Corporation. Krak-gage Accuracy and Resolution. Chaska Minnesota : s.n., 1981. KRAK-TIP No. 8109-1. [18] J.H. Song, Y.I. Chung, Improvement of ASTM compliance offset method for precise determination of crack opening load. INT J FATIGUE, 31 (2009) 809-819. [19] C.Y. Kim, J.H. Song, An automated procedure for determining crack opening level from differential displacement signal data, INT J FATIGUE, 15 (1993) 477-489. [20] E647-08E01, standard Test Method for Measurement of fatigue Crcak Growth Rates. Annual Book of ASTM Standards ASTM. Philadelphia : s.n., 2010. [21] M. Karimi, A. Najafizadeh, A. Kermanpur, M. Eskandari. Effect of martensite to austenite reversion on the formation of nano/submicron grained AISI 301 stainless Steel. MATER CHARACT, 60 (2009) 1220-1223. [22] D.G. Rickerby, P. Fenici, Fatigue Crack Growth in thin section Type 316 Stainless Steel. ENG FRACT MECH, 19 (1984) 585-599. [23] P. Paris, H. Tada, J.K. Donald, Service load fatigue damage –– a historical perspective. INT J FATIGUE,21 (1999) S35-S46.
RkJQdWJsaXNoZXIy MjM0NDE=