ICF13B

13th International Conference on Fracture June 16–21, 2013, Beijing, China -10- [7] Z. Bažant, M. Jirásek, Nonlocal integral formulations of plasticity and damage: survey of progress. J Eng Mech, 128 (2002) 1119–1149. [8] P. Grassl, M. Jirásek, Plastic model with non-local damage applied to concrete. Int J Numer Anal Met, 30(2006) 71–90. [9] K. Saanouni, J. Chaboche, P. Lesne, On the creep crack-growth prediction by a non local damage formulation. Eur J Mech A-Solid, 8 (1989) 437–459. [10] N. Germain, J. Besson, F. Feyel, Composite layered materials: Anisotropic nonlocal damage models. Comput Method App M, 196 (2007) 4272–4282. [11] A. Simone, H. Askes, L. Sluys, Incorrect initiation and propagation of failure in non-local and gradient-enhanced media. Int J Solids Struct, 41 (2004) 351–363. [12] A. Krayani, G. Pijaudier-Cabot, F. Dufour, Boundary effect on weight function in nonlocal damage model. Eng Fract Mech, 76 (2009) 2217– 2231. [13] D. Grégoire, L. Rojas-Solano, G. Pijaudier-Cabot, Continuum to discontinuum transition during failure in non-local damage models. Int J Multiscale Com 10 (2012) 136. [14] M. Jirásek, S. Rolshoven, P. Grassl, Size effect on fracture energy induced by non-locality. Int J Numer Anal Met, 28 (2004) 653–670. [15] D. Grégoire, P. Grassl, L.B. Rojas-Solano, G. Pijaudier-Cabot, Macro and mesoscale models to predict concrete failure and size effects, in: G. Pijaudier-Cabot, F. Dufour (Eds.), Damage Mechanics of Cementitious Materials and Structures, ISTE Ltd and John Wiley & Sons, London, 2012. [16] D. Grégoire, L.B. Rojas-Solano, G. Pijaudier-Cabot, Failure and size effect for notched and unnotched concrete beams. Int J Numer Anal Met, doi: 10.1002/nag.2180 (2013). [17] P. Grassl, D. Grégoire, L.B. Rojas-Solano, G. Pijaudier-Cabot, Meso-scale modelling of the size effect on the fracture process zone of concrete. Int J Solids Struct, 49 (2012) 1818–1827. [18] Z. Bažant, Nonlocal damage theory based on micromechanics of crack interactions. J Eng Mech, 120 (1994) 593–617. [19] G. Pijaudier-Cabot, Y. Berthaud, Effets des interactions dans l’endommagement d’un milieu fragile. formulation non locale. Cr Acad Sci II, 310 (1990) 1577–1582. [20] G. Pijaudier-Cabot, F. Dufour, Non local damage model. Eur J Environ Civ En, 14 (2010) 729–749. [21] C. Giry, F. Dufour, J. Mazars, Stress-based nonlocal damage model. Int J Solids Struct, 48 (2011) 3431–3443. [22] T. Mura, Micromechanics of defects in solids, vol. 3, Springer, 1987. [23] Z. Bažant, J. Le, C. Hoover, Nonlocal boundary layer (nbl) model: overcoming boundary condition problems in strength statistics and fracture analysis of quasibrittle materials, in: Proc. FraMCoS-7, 2010, pp135–143. [24] J. Mazars, A description of micro-and-macroscale damage of concrete structures. Eng Fract Mech, 25 (1986) 729–737. [25] L.B. Rojas-Solano, D. Grégoire, G. Pijaudier-Cabot, Interaction-based non-local damage model for failure in quasi- brittle materials. Mech Res Commun, (2013) submitted. [26] F. Dufour, G. Pijaudier-cabot, M. Choinska, A. Huerta, Extraction of a crack opening from a continuous approach using regularized damage models. Comput Concrete, 5 (2008) 375–388. [27] H. Kolsky, An investigation of the mechanical properties of material at a very high rate of loading. Proc Phys Soc, London, Sec B, 62 (1949) 676–700. [28] D. Grégoire, H. Maigre, J. Réthoré, A. Combescure, Dynamic crack propagation under mixed-mode loading – Comparison between experiments and X-FEM simulations. Int J Solids Struct, 44 (2007) 6517–6534. [29] D. Grégoire, H. Maigre, A. Combescure, New experimental and numerical techniques to study the arrest and the restart of a crack under impact in transparent materials. Int J Solids Struct, 46 (2009) 3480– 3491.

RkJQdWJsaXNoZXIy MjM0NDE=