13th International Conference on Fracture June 16–21, 2013, Beijing, China -10- [2] Yoichi Yamashita, Yusuke Ueda, Hiroshi Kuroki, Masaharu Shinozaki, Fatigue life prediction of small notched Ti-6Al-4V specimens using critical distance. Engineering Fracture Mechanics, 77 (2010) 1439-1453. [3] Peterson RE. Stress concentration factors. New York: Wiley; 1974. [4] Philip CE, Heywood RB. The size effect in fatigue of plain and notched steel specimens under reversed direct stress. Proc Inst Mech Eng 1951; 165: 113-24. [5] Bellett D, Taylor D, Marco S, Mazzeo E, Guillois J, Pircher T, The fatigue behaviour of three-dimensional stress concentrations. Int. J. Fatigue 27 (2005) 207–21. [6] Neuber H. Theory of stress concentration in shear strained prismatic bodies with arbitrary non-linear stress law. J Appl Mech 1961;28:544–50. [7] Neuber H. Theory of notch stresses: principle for exact stress calculations. Ann Arbor (MI): Edwards, 1946 [8] Peterson RE. Notch sensitivity. In: Sines G, Waisman JL, editors. Metal fatigue. New York: McGraw-Hill, 1959: 293-306. [9] Heywood RB. Stress concentration factors, relating theoretical and practical factors in fatigue loading. Engineering London 179 (1955) 146- 8. [10] Weixing, Y., Stress field intensity approach for predicting fatigue life. International Journal of Fatigue, vol. 15, no. 3, pp. 243-246, 1993. [11] Anderson, T., Fracture Mechanics: Fundametals and Applications. Taylor & Francis, Boca Raton, FL, third ed., 2005. [12] William D. Musinski (2010) Novel methods for microstructure-sensitive probabilistic fatigue factor. Ph.D. thesis, Georgia Institute of Technology, Atlanta, USA. [13] Lanning DB, Nicholas T, Haritos GK, On the use of critical distance theories for the prediction of the high cycle fatigue limit stress in notched Ti-6Al-4V. Int J Fatigue 27 (2005) 45–57. [14] Owolabi GM, Prasannavenkatesan R, McDowell DL, Probabilistic framework for a microstructure-sensitive fatigue notch factor. Int J. Fatigue 32 (2010) 1378–1388. [15] Rajiv A. Naik, David B. Lanning, Theodore Nicholas, Alan R. Kallmeyer. A critical plane gradient approach for the prediction of notched HCF life. Int. J. Fatigue 2005; 27: 481-492. [16] Morrissey R, Goh CH, McDowell DL. Microstructure-scale modeling of HCF deformation. Mech Mater 2005;35:295-311 [17] Shenoy MM. Constitutive modeling and life prediction in Ni-base superalloys. Ph.D. Thesis, Georgia Institute of Technology; 2006 [18] Kumar RS, Wang AJ, McDowell DL. Effects of microstructure variability on intrinsic fatigue resistance of nickel-base superalloys – a computational micromechanics approach. Int J Fract 2006;137:173-210 [19] Mayeur, J.R., McDowell, D.L., 2007. A three-dimensional crystal plasticity model of duplex Ti-6Al-4V. Int. J. Plasticity 23, 1457-1485 [20] Asaro, R.J., 1983. Micromechanics of crystals and polycrystals. Adv. Appl. Mech. 23, 1-115. [21] McGinty RD (2001) Multiscale representation of polycrystalline inelasticity. Ph.D. thesis, Georgia Institute of Technology, Atlanta, USA [22] Zhang, M., Zhang, J., McDowell, D.L., 2007. Microstructure – based crystal plasticity modeling of cyclic deformation of Ti-6Al-4V. Int. J. Plasticity 23, 1328-1348 [23] Bridier F., McDowell D.L., Villechaise P., Mendez Jose., 2009. Crystal plasticity modeling of slip activity in Ti-6Al-4V under high cycle fatigue loading. Int. J. Plasticity 25, 1066-1082
RkJQdWJsaXNoZXIy MjM0NDE=