13th International Conference on Fracture June 16–21, 2013, Beijing, China -10- [22] Jones K.W., Dunn M.L. (2008) Fatigue crack growth through a residual stress field introduced by plastic beam bending. Fatigue Fracture Engineering Materials Structures 31, 863-875. [23] Keith W. Jones, Martin L. Dunn. Predicting fatigue crack growth from a preyielded hole. International Journal of Fatigue 31 (2009), pp 223–230. [24] N.P. O’Dowd, K.M. Nikbin, R.C. Wimpory, F.R. Biglari, M.P. O’Donnell, Computational and experimental studies of high temperature crack growth in the presence of residual stress, PVP2006-ICPVT-11, ASME Pressure Vessels and Piping Division Conference. July 23-27 (2006), Vancouver, BC, Canada. [25] M. Benachour, A. Hadjoui, M. Benguediab and N. Benachour. Stress ratio effect on fatigue behavior of aircraft aluminum alloy 2024 T351. MRS Proceedings, 1276, 7 (2010). [26] O.P. Ostash, R.V. Chepil, V.V. Vira. Fatigue crack initiation and propagation at different stress ratio values of uniaxial pulsating loading. Fatigue Fract Engng Mater Struct 34, (2010), pp 430–437. [27] C.A. Rodopoulos, J.H. Choi, E.R. de los Rios, J.R. Yates. Stress ratio and the fatigue damage map-Part II: The 2024-T351aluminium alloy. International Journal of Fatigue 26 (2004), pp 747–752. [28] R. Kumar, S.B.L. Garg. Influence of stress ratio and material properties on effective stress range ratio and crack growth. Engineering Fracture Mechanics 32(2), (1989), pp. 195-202. [29] J.C. Newman, International Journal of Fracture, 24(3), 1984, 131
RkJQdWJsaXNoZXIy MjM0NDE=