ICF13B

13th International Conference on Fracture June 16–21, 2013, Beijing, China TAMOP-4.2.2.A-11/1/KONV-2012-0029 project, with support by the European Union, co-financed by the European Social Fund. References [1] R. J. Allen, G.. S. Booth, T. Jutla, A review of fatigue crack growth characterisation by linear elastic fracture mechanics (LEFM). Part I – Principles and methods of data generation. Fatigue and Fracture of Engineering Materials and Structures, 11/1 (1988) 45-69. [2] R. J. Allen, G.. S. Booth, T. Jutla, A review of fatigue crack growth characterisation by linear elastic fracture mechanics (LEFM). Part II – Advisory documents and applications within national standards. Fatigue and Fracture of Engineering Materials and Structures, 11/2 (1988) 71-108. [3] A. Ohta, Y. Maeda, M. Kosuge, S. Machida, H. Yoshinari, H., Fatigue Crack Propagation Curve for Design of Welded Structures. Transactions of the Japan Welding Society, 20/1 (1989) 17-23. [4] Merkblatt DVS 2401 Teil 1: Bruchmechanische Bewertung von Fehlern in Schweissverbindungen. Grundlagen und Vorgehensweise (Oktober 1982). [5] Det norske Veritas, Classification Notes, Note No. 30.2: Fatigue strength analysis for mobile offshore units (August 1984). [6] BS 7910: Guide on methods for assessing the acceptability of flaws in fusion welded structures (1999). [7] Merkblatt DVS 2401 Teil 2: Bruchmechanische Bewertung von Fehlern in Schweissverbindungen. Praktische Anwendung (April 1989). [8] P. Paris, F. Erdogan, A critical analysis of crack propagation laws. Journal of Basic Engineering, Transactions of the ASME, (1963) 528-534. [9] J. Lukács, Reliability of Cyclic Loaded Welded Joints Having Cracks, CSc dissertation, Miskolci Egyetem, Miskolc and Budapesti Műszaki Egyetem, Budapest (1992). (In Hungarian: Repedést tartalmazó hegesztett kötések megbízhatósága ismétlődő igénybevétel esetén.) [10] J. Lukács, Fatigue crack propagation in steels and their welded joints, Publications of the University of Miskolc, Series C, Mechanical Engineering, 46/1 (1996) 77-91. [11] A. Balogh, I. Török, M. Gáspár, D. Juhász, Present state and future of advanced high strength steels, Journal of Production Processes and Systems, 6/1 (2012) 79-90. [12]M. Tisza, Materials science and technological developments in metal forming, in: L. Pokorádi (Ed.), Műszaki Tudomány az Észak-alföldi Régióban 2010 Konferencia előadásai, Debreceni Akadémiai Bizottság Műszaki Albizottsága, Debrecen, 2010, pp. 1-8. (In Hungarian: Anyagtudományi és technológiai fejlesztések a képlékenyalakításban.) [13] J. Lukács, Fatigue crack propagation in railway rails under I and I+II loading conditions, in: G. Lütjering, H. Nowack (Eds.), Proceedings of the Sixth International Fatigue Congress (FATIGUE’96), Elsevier Science Ltd., 1996, Vol. II, pp. 1189-1194. [14]ASTM E 647: Standard test method for measurement of fatigue crack growth rates (1988). [15]D. B. Owen, Handbook of statistical tables, Vychislitel'nyjj Centr AN SSSR, Moskva, 1973. (In Russian: Sbornik statisticheskikh tablic.) [16] I. Vincze, Mathematical statistics with industrial applications, Műszaki Könyvkiadó, Budapest, 1975. (In Hungarian: Matematikai statisztika ipari alkalmazásokkal. [17] A. Balogh, F. Dukáti, L. Sallay, Quality control and reliability, Műszaki Könyvkiadó, Budapest, 1980. (In Hungarian: Minőségellenőrzés és megbízhatóság. [18]D. Taylor, A Compendium of Fatigue Thresholds and Growth Rates, EMAS Ltd., Warley, 1985. [19]Bruchmechanische Werkstoffcharakterisierung, H. Blumenauer (Ed.), Deutscher Verlag für Grundstoffindustrie, Leipzig, 1991. [20]J. Lukács, Determination of fatigue crack propagation limit curves and their application for pipelines having crack like defects, in: R. Denys (Ed.), Pipeline Technology, Elsevier Science B. V., 2002, Vol. 2, pp. 127-140. -9-

RkJQdWJsaXNoZXIy MjM0NDE=