ICF13B

13th International Conference on Fracture June 16–21, 2013, Beijing, China -10- References [1] W. Weibull. A statistical representation of fatigue failures in solids. Technical report, Royal Institute of Technology of Sweden, 1949. [2] R. Picciotto. Tensile fatigue characteristics of sized polyester/viscose tarn and their effect on weaving performance. PhD thesis, North Caroline State University, 1970. [3] J. Köhler. Statistischer Größeneinfluss im Dauerschwingverhalten ungekerbter und gekerbter metallischer Bauteile. PhD thesis, TU München, 1975. [4] A. Fernández-Canteli, V. Esslinger, and B. Thürlimann. Ermüdungsfestigkeit von Bewehrungs- und Spannstählen. Technical report, Institut für Baustatik und Konstruktion ETH Zürich, 1984. [5] M. Shirani and G. Härkegård. Fatigue life distribution and size effect in ductile cast iron for wind turbine components. Engineering Failure Analysis, 18(1):12 – 24, 2011. [6] E. Castillo and A. Fernández-Canteli. A Unified Statistical Methodology for Modeling Fatigue Damage. Springer, 2009. [7] W. Weibull. A statistical theory of the strength of materials. Proc Roy Swed Inst Eng Res, (151):1 – 45, 1939. [8] C. Przybilla, A. Fernández-Canteli, and E. Castillo. Deriving the primary cumulative distribution function of fracture stress for brittle materials from 3- and 4-point bending tests. Journal of the European Ceramic Society, 31:451–60, 2011. [9] E. Castillo, A. Fernández-Canteli, J. Ruiz-Tolosa, and J. Sarabia. Statistical models for analysis of fatigue life of long elements. Journal of Engineering Mechanics, 116(5):1036–1049, 1990.

RkJQdWJsaXNoZXIy MjM0NDE=